Мозаичной окраске кожи и глаз

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 28 июня 2019; проверки требуют 10 правок.
Пёстролистный фикус бенджамина — периклинальная химера, образованная двумя линиями клеток: нормальными хлорофиллпродуцирующими (зелёные участки) и мутантными с низким числом хлоропластов (белые участки).
Химера — организм, состоящий из генетически разнородных клеток. У животных химерами называют организмы, клетки которых происходят от двух и более зигот. Химеризм у животных нужно отличать от мозаицизма — присутствия в одном организме генетически разнородных клеток, происходящих от одной зиготы[1]. Часто химерически построенными являются не целые организмы, а лишь их отдельные органы или части[2].
История термина[править | править код]
В 1907 году термин впервые применил немецкий ботаник Г. Винклер для форм растений, которые были получены в результате сращивания паслёна и томата[3].
В 1909 году Э. Баур, изучая пеларгонию пестролистную, выяснил природу данного явления[3].
Естественные химеры впервые описаны М. С. Навашиным. В частности, им были обнаружены химеры Crepis dioscoridis L.[3] и Crepis tectorum L.[4] Естественные гаплохламидные периклинальные химеры впервые описаны Л. П. Бреславец на примере отдельных географических рас конопли[5].
Химеризм у растений[править | править код]
Схема взаимного расположения тканей в прививочных химерах разных типов. A, B — «родительские» растения. C—E: взаимное расположение тканей в C — периклинальной, D — секториальной, E — мериклинальной химерах.
Химеры могут возникать в природе в результате спонтанных мутаций соматических клеток, в экспериментальных условиях (обработка мутагенами, полиплоидогенами, колхицином, другие воздействия), а также среди растений-регенерантов и в результате прививок. Химеры более распространены у растений, размножаемым вегетативным способом, так как лишь при этом способе химерность сохраняется достаточно долго. При половом размножении возможно наследование химерности, возникающей при нестабильности аллелей. В этом случае наследование признаков не подчиняется менделевским законам и считается нестабильной мутацией. В природе химеры редки, возникают, как правило, в результате случайной гибридизации и механических повреждений[5].
Химеры (особенно периклинальные, как более стабильные) обладающие комплексом хозяйственных преимуществ, имеют важное значение в растениеводстве. Они часто выращиваются как декоративные растения[6].
В ботанике различают следующие виды химер (см. таблицу).
Вид химеры | Особенности |
---|---|
мозаичные (гиперхимеры) | генетически разные ткани образуют тонкую мозаику |
секториальные | разнородные ткани расположены крупными участками |
периклинальные | ткани лежат слоями друг над другом |
мериклинальные | ткани состоят из смеси секториальных и периклинальных участков |
Периклинальные химеры бывают:
- диплохламидные (например, пеларгония с белоокаймлёнными листьями)
- гаплохламидные (например, хлорофитум с белоокаймлёнными листьями)
Периклинальные химеры более часто встречаются в природе, что объясняется их большей стабильностью. Нередко они обнаруживаются среди размножаемых вегетативно сортов декоративных растений[5]. Так, Juniperus davurica ‘Expansa Variegata’ является периклинальной химерой, у которой внешние ткани генотипически альбиносные, а внутренние состоят из хлорофиллоносных клеток[7].
Взаимодействие между компонентами химер и переход различных веществ из одного компонента в другой могут приводить к различным аномалиям развития и иногда к бесплодию химеры.
В практике садоводов химеры, возникшие случайно в результате прививок (т. н. пестролистность), воспроизводят вегетативным размножением заново из поколения в поколение (например, химеры между пурпурным ракитником и золотым дождём — т. н. ракитник Адама, химеры между померанцем и лимоном). Исследователи применяют различные химеры между мушмулой и боярышником.
Расхимеривание[править | править код]
Потеря химерности свойственна как растениям, полученным в результате обработки колхицином, так и химерам, возникшим спонтанно. Наряду с периклинальными химерами, сохраняющими свои особенности при вегетативном размножении в течение 100 и более лет[3], описаны случаи исчезновения химерности (у трихимер Pelargonium zonaie, известного с XIX века апельсина ‘Shamouti’ и пр.). У некоторых форм винограда расхимеривание может происходить на отдельных побегах, при этом нижняя часть побегов состоит из полиплоидных тканей[5].
Частота расхимеривания зависит от способа размножения растений. Размножение корневыми черенками чаще приводит к расхимериванию, чем вегетативное размножение другими частями растения[5].
Химеризм у животных[править | править код]
У животных химерами называют организмы, которые состоят из генетически различных клеток, которые происходят от двух и более разных зигот.
Примером химеризма у животных является фримартинизм коров и других животных. Фримартинизм — вид аномального гермафродитизма, сопровождающийся стерильностью, при котором у самок развиваются одновременно и яичники, и тестикулы. Этому явлению подвержены телята женского пола из пар разнополых близнецов. Фримартинизм объясняется формированием анастомозов сосудов между разнополыми плодами, в результате чего между ними происходит обмен половыми гормонами и предшественниками половых клеток[8][1]. Сходное явление было обнаружено у мармозеток, однако у них оно не ведёт к стерильности[8].
Химеры могут формироваться из четырёх гамет (результат объединения в один эмбрион двух оплодотворённых яйцеклеток или эмбрионов на ранних стадиях развития).
Химеризм у животных может быть как результатом индивидуального развития организма (онтогенеза), так и результатом трансплантации органа, ткани (например, костного мозга или переливания крови). Химеры часто могут давать потомство, и тип потомства зависит от того, из какой линии клеток развились гаметы.
В 1980-х годах искусственным путём была получена межвидовая химера овцы и козы.
В 2017 году учёными из Salk Institute был создан эмбрион химеры — свиньи с клетками человека[9].
Химеризм у человека[править | править код]
У людей химеризм может возникать на разных стадиях онтогенетического развития: в момент оплодотворения, эмбрионального развития или во взрослом возрасте.
Химеризм на стадии оплодотворения[править | править код]
Описано несколько случаев тетрагаметного химеризма у человека. Такие химеры возникают, когда две разные зиготы сливаются вскоре после оплодотворения и формируют единый эмбрион. Такие химеры идентифицируют, например, по наличию двух популяций эритроцитов, гермафродитизму и иногда по мозаичной окраске кожи и глаз[10].
Фетальный и материнский микрохимеризмы[править | править код]
Микрохимеризм возникает при проникновении клеток матери и плода через плацентарный барьер млекопитающих и характеризуется в норме небольшой долей «чужих» клеток в организме.
Различают два вида микрохимеризма: фетальный микрохимеризм — присутствие клеток плода в организме матери, и материнский микрохимеризм — присутствие клеток матери в организме сначала плода, а затем и ребёнка. Предполагается, что микрохимеризм вследствие различия иммунных свойств приобретённых клеток и клеток организма-хозяина является причиной ряда заболеваний аутоиммунного характера: ювенильного дерматомиозита и неонатальной волчанки при фетальном микрохимеризме, преэклампсии, системной красной волчанки и некоторых форм рака при материнском микрохимеризме, а также ряда других патологических состояний.
Если в крови больного содержатся клетки человека противоположного пола, химеризм легко выявить, обнаружив клетки с женским и мужским кариотипами. В остальных случаях проводят типирование клеток крови больного по HLA.
Химеризм у близнецов[править | править код]
Как и у некоторых других млекопитающих, у человека возможен обмен клетками между близнецами в ходе внутриутробного развития. Миграция клеток происходит через общую плаценту (плацентарные анастомозы).
У гомозиготных близнецов[править | править код]
Теоретически химеризм у гомозиготных близнецов невозможен, так как они генетически идентичны и происходят от одной зиготы. Однако редкие наблюдения показывают, что обмен клетками между такими близнецами всё-таки происходит. Описан случай монохориональной диамниотической беременности, при которой у одного из близнецов на ранней стадии развития возникла трисомия по 21 хромосоме. При рождении один из близнецов имел фенотипические признаки страдающего синдромом Дауна, второй имел нормальный фенотип. Анализ микросателлитной ДНК показал, что близнецы были действительно гомозиготными. При этом в клетках эпителия ротовой полости каждого близнеца были обнаружены только его собственные клетки (дисомические или трисомические по 21 хромосоме), в то время как кровь содержала клетки обоих близнецов. Это явление называется химеризмом клеток крови и объясняется тем, что близнецы с монохориональной плацентой в 70 % случаев обмениваются кровью на той или иной стадии развития[11].
У гетерозиготных близнецов[править | править код]
Как правило, гетерозиготные близнецы у человека имеют свои собственные плаценты. Однако было описано несколько случаев, когда гетерозиготные близнецы питались от общей плаценты. В такой ситуации происходит обмен кровью между близнецами, которые не являются генетически идентичными, что приводит к химеризму клеток крови и, возможно, других тканей. Предполагают, что частота этого явления недооценена и увеличивается с применением вспомогательных репродуктивных технологий[8][1].
В культуре[править | править код]
- Химеризм выявляется у пациента в 2 серии 3 сезона сериала «Доктор Хаус».
- Химеризм неоднократно упоминается и является одним из ключевых моментов понимания сюжета в сериале «Тёмное дитя».
- Также химеризм был найден у убийцы в 23 серии 4 сезона сериала «C.S.I.: Место преступления».
- Химеризм был обнаружен в юношеском возрасте у детектива в детективном романе Франка Тильё «Фантомная память» из цикла книг «Расследование ведут комиссар Шарко и Люси Энебель».
- Также встречается в телесериале «Семейные мелодрамы». Сезон 6. Серия 34. Название «Химера».
См. также[править | править код]
- Мозаицизм
- Вегетативная гибридизация
- Лидия Фэйрчайлд
Примечания[править | править код]
- ↑ 1 2 3 Abuelo D. Clinical significance of chimerism // Am J Med Genet C Semin Med Genet. — 2009. — Т. 151C, вып. 2. — С. 148—51. — doi:10.1002/ajmg.c.30213. — PMID 19378333.
- ↑ Химеры (недоступная ссылка). Большая Медицинская Энциклопедия. Дата обращения 14 марта 2013. Архивировано 3 апреля 2014 года.
- ↑ 1 2 3 4 Кренке Н. П. Химеры растений. — М—Л.: АН СССР, 1947. — 386 с.
- ↑ Nsvashin M. Unbalanced somatic chromosomal variation in Crepis // Univ. California Publs. Agricult. Sci.. — 1930. — Т. 6, № 3. — С. 95—106.
- ↑ 1 2 3 4 5 Кунах В. А. Геномная изменчивость соматических клеток растений // Биополимеры и клетка. — 1995. — Т. 11, № 6.
- ↑ Крен М. Б., Лоуренс У. Дж. Ч. Генетика садовых и овощных растений. — М.-Л.: Сельхозгиз, 1936. — 232 с.
- ↑ Ruth J., Klekowski E. J., Jr., Stein O. L. Impermanent initials of the shoot apex and diplontic selection in a juniper chimera // Am. J. Bot.. — 1985. — № 72. — С. 1127–1135.
- ↑ 1 2 3 Chen K., Chmait R. H., Vanderbilt D., Wu S., Randolph L. Chimerism in monochorionic dizygotic twins: case study and review // Am J Med Genet A. — 2013. — Т. 161A, вып. 7. — С. 1817—24. — doi:10.1002/ajmg.a.35957. — PMID 23703979.
- ↑ Учёные создали химеру, theUK.one (27 января 2017).
- ↑ Yu N., Kruskall M. S., Yunis J. J., Knoll J. H., Uhl L., Alosco S., Ohashi M., Clavijo O., Husain Z., Yunis E. J., Yunis J. J., Yunis E. J. Disputed maternity leading to identification of tetragametic chimerism // N Engl J Med. — 2002. — Т. 346, вып. 20. — С. 1545—52. — PMID 12015394.
- ↑ O’Donnell C. P., Pertile M. D., Sheffield L. J., Sampson A. Monozygotic twins with discordant karyotypes: a case report // J Pediatr. — 2004. — Т. 145, вып. 3. — С. 406—8. — PMID 15343200.
Литература[править | править код]
- Uptake of informative molecules by living cells, ed. L. Ledoux, Arnst. — L., 1972; Hess D., Transformationen an höheren Organismen, «Naturwissenschaften», 1972, Jg. 59.
- Baruch Rinkevich. Human natural Chimerism: an acquired character or a vestige of evolution? Human Immunology, vol. 62, No 6 (June 2001), pp. 651—657
- Значение слова «Химеры (в биологии)» в Большой советской энциклопедии
Ссылки[править | править код]
- Лайнбергер Р. Происхождение, развитие и размножение химер на сайте Культивар
- Проблемы регуляции создания гибридов животных и людей // Викиновости
Источник
Химеризм – одновременное наличие в организме клеток разных генотипов.
Данное патологическое состояние может возникать на разных стадиях развития организма: при оплодотворении, на этапе эмбрионального развития, а также во взрослом возрасте.
Иногда это может отражаться на внешности человека, например, в виде «мозаичной» кожи или глаз разного цвета. Но, как правило, человек даже не предполагает того, что в его организме сосуществуют клетки с разными наборами генов.
Существует несколько видов химеризма, отличающихся причинами возникновения.
Тетрагаметический – две зиготы (клетки, образующиеся в результате слияния двух родительских половых клеток в процессе оплодотворения) сливаются в одну и формируют только один эмбрион. При этом каждая из зигот оплодотворена разными сперматозоидами. В результате такого слияния зигот органы и клетки образовавшегося организма имеют разный хромосомный набор.
Такой химеризм может встречаться при ЭКО, поскольку врачи пересаживают несколько оплодотворенных яйцеклеток. В большинстве случаев рождаются близнецы, редко – химеры. Для таких химер возможно наличие двух типов эритроцитов, гермафродитизм, мозаичная окраска кожи и глаз.
Микрохимеризм – передача клеток от плода к матери и наоборот. Иммунные клетки эмбриона, встраиваясь в клетки матери, способны помочь ей избавиться от серьезных заболеваний при наличии их на момент беременности, а также способны способствовать омоложению организма женщины. Если же материнские клетки встраиваются в эмбрион, то в таком случае возникает опасность, что ребенок в утробе может скопировать материнские болезни.
Близнецовый – обмен клетками между близнецами в ходе внутриутробного развития через общую плаценту.
Такой обмен приводит к тому, что ребенок может иметь две нити ДНК.
Посттрансплантационный – результат переливания крови или пересадки органов. Как правило, собственные клетки организма существуют наряду с клетками донора, но иногда клетки донора полностью встраиваются в пересаженный организм, изменяя структуру его крови.
При пересадке костного мозга введенные донорские клетки могут производить только собственные клетки, со своим генетическим набором. В случае если трансплантат успешно прижился, то человек становиться химерой с генетическим набором клеток донора.
В виду отсутствия явных симптомов такого патологического состояния, только проведение комплексного генетического обследования может определить, является ли человек химерой. Обычно с такой особенностью человек может жить без трудностей, но иногда химеризм может явиться причиной курьезов.
Известен случай с американкой Лидией Фейрчайлд, которой после проведенного теста ДНК пришлось доказывать, что она приходится матерью своим детям. Анализ не подтверждал их родственную связь из-за наличия чужой ДНК в ее крови. Но более подробные исследования показали, что Лидия является носителем генетических наборов двух людей: волосы, кровь, кожа, эпителий ротовой полости принадлежали ей, а вот эпителий матки – соответствовал некой сестре-двойняшке.
Похожий случай произошел с Карен Киган. Женщине понадобилась трансплантация почки. Результаты анализов крови двух ее детей показали, что они не являются детьми Карен. Только после дополнительных исследований ДНК образцов разных органов было установлено, что в организме Карен часть клеток имеет набор ДНК, соответствующий сестре-двойняшке.
Американская певица и модель Тейлор Мюль уже будучи взрослой узнала, что у нее тетрагаметный химеризм. Близнец Мюль был девочкой, поэтому слияние не повлияло на половые признаки. При этом у девушки два цвета кожи, левая сторона тела немного больше правой. Клетки иммунной системы и крови Мюль имеют два набора ДНК и постоянно борются друг с другом. От этого страдает иммунная система девушки.
Недавно Тейлор Мюль, основала движение Chimera Awareness. Это движение помогает людям, которым ещё не поставлен диагноз химеризм.
Статистика утверждает, что около 8% близнецов подвержены химеризму.
Известны случаи близнецового химеризма, в результате которого рождаются дети с уродствами. Например, 11-ти летняя китайская девочка, из спины которой растет и развивается поглощенный брат-близнец или техасский ребенок-химера – на одну половину черный мальчик, на другую – белая девочка. После сложной операции ребенок продолжил жить, будучи мальчиком.
Химерой был и знаменитый маньяк Чикатило, данные ДНК по группе крови и по сперме которого не совпадали. Анализы спермы и крови показывали результаты, соответствующие двум различным людям, что помогло ему долгое время скрываться от правосудия.
Сегодня известно около 40 случаев человеческого химеризма.
Интересны случаи исцеления пациентов в результате пересадки костного мозга. После подобной операции реципиент становиться химерой, так как в его организме живет генетический материал донора. Известен случай, когда после трансплантации костного мозга 42-летний американец, страдающий и лимфомой, и СПИДом, исцелился от обеих болезней. Донором реципиента оказался носитель обеспечивающей устойчивость к ВИЧ мутации, которая была передана больному с костным мозгом.
В современных неблагоприятных условиях окружающей среды люди сталкиваются с различными процессами мутации, последствия которых непредсказуемы. Не исключено, что это защитная реакция природы, направленная на выживание в экстремальных условиях.
Источник
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 27 июня 2017; проверки требуют 7 правок.
Мозаицизм (генетический мозаицизм, хромосомный мозаицизм — mosaicism; мозаичность; могут употребляться синонимы «мозаичная форма», «мозаичный кариотип») — от фр. mosaique «мозаика» — наличие в тканях (растения, животного, человека) генетически различающихся клеток.
Следует отличать мозаицизм от химеризма, при котором два (или более) генотипа происходят более чем от одной зиготы.
Понятие мозаицизма связано с понятиями трисомии и анеуплоидии.
Многоклеточный организм, клеточные популяции которого различны по генетической конституции, именуется мозаик (например, гинандроморфический мозаик).
Причины возникновения[править | править код]
Может возникать в результате:
- перераспределения (кроссинговер) в соматических клетках,
- соматических мутаций в зиготе или на ранних стадиях дробления;
- неправильного расхождения (сегрегации) хромосом при делении клеточного ядра (митозе).
- генотерапии
Диагностика[править | править код]
Для диагностики мозаицизма исследуют кариотип крови или клеток ткани — требуется большее число клеток, чем при диагностике полных форм, так как часть клеток будут демонстрировать обычный кариотип.
Это следует учитывать при пренатальной диагностике генетических аномалий плода, например, при таких анализах плода как биопсия хориона (можно проводить на ранних сроках беременности).
Последствия[править | править код]
С хромосомным мозаицизмом связаны некоторые хромосомные болезни человека, обычно трисомии: так, мозаичную форму могут иметь синдром Дауна (около 2 %), синдром Клайнфельтера (Клайнфелтера, Кляйнфельтера), синдром Шерешевского — Тёрнера (20-50 % больных), синдром Эдвардса (около 10 %), Синдром де Ля Шапеля; при этом, как правило, часть клеток характеризуется обычным набором хромосом, а часть клеток — наличием дефектной хромосомы.
При мозаицизме обычно наблюдается менее выраженная картина синдромов[1] . Это справедливо в том случае, если число мутантных клеток составляет менее 10 %.
Мозаицизм по половым хромосомам (XX/XY) в ряде случаев приводит к интерсекс-состояниям.
С мозаичными формами генных болезней не следует путать мозаицизм гонад. Мозаицизм гонад является частным случаем органного мозаицизма, возникающего на более поздних стадиях эмбрионального развития в процессе органогенеза. Наличие его у клинически здорового индивида может обусловить рождение детей с полной формой доминантной наследственной болезни (например, гемофилии)[2] .
Примечания[править | править код]
- ↑ Берешева А. К. Роль молекулярно-цитогенетической диагностики в генетическом консультировании супружеских пар с нарушением репродуктивной функции: Автореф. дис. … канд. ,биол. наук. — Харьков, 1995.
- ↑ Сайт «Биология человека».
Ссылки[править | править код]
- Сайт «Биология человека», статья «Мозаицизм клеток организма»
- Сайт «Биология человека» статья «Генные наследственные болезни: мозаичные формы»
- В. О. Шаронин, С. Г. Ворсанова, Н. А. Белова, М. В. Прыткина, Ю. Б. Юров, статья «Необычное проявление синдрома Клайнфелтера у мальчика 1,5 лет: молекулярно-цитогенетическая диагностика мозаичной формы полисомии хромосомы Х»
- Н. П. Кулешов, Г. Р. Мутовин, О. Б. Барцева, Дж. М. Атаева, статья «Молекулярно-цитогенетические методы в диагностике хромосомных болезней» (недоступная ссылка)
Литература[править | править код]
- Карамышева Т. В., Матвеева В. Г., Шорина А. Р., Рубцов Н. Б. Клинический и молекулярно-цитогенетический анализ редкого случая мозаицизма по частичной моносомии 3р и частичной трисомии 10q у человека. Генетика, 2001, 37, 811—816.
- Ворсанов С. Г., Юров Ю. Б., Александров И. А. и др. Молекулярно-цитогенетическая диагностика наследственных болезней, связанных с различными аномалиями хромосом Х. Педиатрия 1989; 1: 78-80.
Источник